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Iterated tabu search for identifying community structure in complex networks
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This paper presents an iterated tabu search (denoted by ITS) algorithm for optimizing the modularity of
community structure in complex networks. The proposed algorithm follows a general framework composed of
two phases: basic optimization and postrefinement. When the basic optimization cannot improve the modular-
ity any more, a postrefinement procedure is employed to further optimize the objective function with a global
view. For both these two phases, iterated tabu search algorithm is employed to optimize the objective function.
Computational results show the high effectiveness of the proposed ITS algorithm compared with six state-of-
the-art algorithms in the literature. In particular, our ITS algorithm improves the previous best known modu-

larity for several small and medium size networks.
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I. INTRODUCTION

Understanding the structure properties of complex net-
works has attracted a considerable amount of attention from
the scientific community in recent years, particularly within
physics. Complex networks often consist of a set of vertices
connected by edges, where vertices represent entities in the
complex system and edges represent connections or relations
between them. Examples may include social relationship net-
works [1], world wide web [2], internet [3], protein-protein
interaction network [4], citation and collaboration network
[5,6], food web [7], and so on. For various complex net-
works, a large number of structural features have been ana-
lyzed by researchers such as the small world phenomena [8],
vertex similarity [9], mixing patterns [10], and betweenness
centrality [11].

In the last decade, one of the most popular features that
has been the focus of many recent efforts is the community
structure or module of complex networks, i.e., the clustering
of vertices into groups such that the density of within-group
edges is much higher than that of between-group edges. The
ability to detect community structure has a large amount of
usefulness in many aspects [12]. For example, nodes belong-
ing to the same community may have much more common
features than those in different communities, which could be
used to simplify the functional analysis of complex net-
works. Furthermore, community structure may provide in-
sights in understanding some uncharacteristic properties of a
complex network system [13,14]. For instance, in the world
wide web, community analysis has uncovered thematic clus-
ters [12,13]; in biochemical or neural networks, communities
may be functional groups [14] and separating the network
into such groups could simplify functional analysis consid-
erably.

Recently, Newman and Girvan proposed a so-called
“modularity” measure to evaluate the meaningfulness of a
specific division of a complex network into communities
[15], which has been widely accepted by the scientific com-
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munity. High value of modularity represents a good commu-
nity division, meaning that the real number of within-
community edges is much more than expected by random
chance. However, the problem of optimizing the modularity
of a specific network division has shown to be nondetermin-
istic polynomial (NP) complete [16]. Therefore, it is unfea-
sible to exhaustively search all possible divisions to find the
optimal modularity, even for a small number of vertices. In-
stead, heuristic algorithms based on metaheuristics have
shown to be highly effective.

In recent years, various highly effective heuristic and me-
taheuristic algorithms have been proposed to optimize the
modularity of large networks. According to [17], all these
algorithms could be categorized into the following: divisive
or link removal, agglomerative or clustering, optimization
based, spectral analysis, and others. Newman and Girvan
proposed a divisive community identification algorithm that
iteratively removes edges with the highest value of edge be-
tweenness [15]. In [18,19], Newman and co-workers pro-
posed a greedy algorithm, iteratively joining a pair of com-
munities that produced the largest gain in modularity until a
maximum value of modularity is obtained. Duch and Arenas
developed an extremal optimization algorithm, which con-
sidered the contribution of each vertex to the total value of
modularity [20]. Newman proposed a spectral bisection al-
gorithm by reformulating the modularity in terms of the
eigenvectors of a characteristic matrix [12,21]. Schuetz and
Caflisch introduced the multistep greedy algorithm for
modularity optimization, which is based on the idea of si-
multaneously merging several pairs of communities [22]. In
[23], Danon et al. proposed an improved algorithm over
[18,19] by considering the inhomogeneities in community
sizes. Other algorithms include the L-shell method [24], the
hierarchical clustering [25], the simulated annealing [26], the
tabu search algorithm [27], and so on. Generally, our iterated
tabu search (ITS) algorithm can be classified as an
optimization-based divisive algorithm.

This paper presents ITS, a hybrid metaheuristic algorithm
integrating a tabu search procedure with an adaptive pertur-
bation operator [from iterated local search (ILS)] for opti-
mizing the modularity of community structure division. In
this algorithm, we highlight the balance between intensifica-
tion and diversification. The proposed ITS algorithm follows
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a general framework composed of two phases: basic optimi-
zation and postrefinement. The basic optimization phase it-
eratively divides the network community into smaller ones
until the modularity function cannot be improved any more.
Then the postrefinement phase is employed to further opti-
mize the modularity while maintaining the number of com-
munity structures fixed. For both these two phases, an iter-
ated tabu search algorithm is introduced to optimize the
objective function. Experiments are presented on the set of
seven networks from the literature, showing that the pro-
posed algorithm achieves very competitive results compared
with many previous best solutions.

The rest of this paper is organized as follows. Section II
describes our iterated tabu search algorithm for the phases of
both basic optimization and postrefinement. In Sec. III our
computational results are presented and compared with six
reference algorithms in the literature, showing the effective-
ness of the proposed hybrid metaheuristic algorithm. Finally,
Sec. IV concludes the paper.

II. ITERATED TABU SEARCH ALGORITHM
A. Problem definition

Recently, Newman and Girvan proposed a simple quanti-
tative measure of the quality of communities called “modu-
larity,” which has become widely accepted by the scientific
community [15]. The idea is from the intuition that a net-
work with community structure is different from a random
network. Given an unweighted and undirected graph G and
suppose the vertices are divided into communities such that
vertex u belongs to community r(u) (denoted by c,(,), the
modularity is defined as

0=5-3 [AW - %]a[rw),r(v)], (1)
m 2m

uv

where A is the adjacency matrix of graph G. A,,=1 if node u
and node v connect with each other, A,,=0 otherwise. The &
function &(i,j) is equal to 1 if i=j and 0 otherwise. The
degree d, of a vertex u is defined to be d,=>,A,, and m
=%ZWAM, is the number of edges in the graph.

One observes that this modularity function can be repre-
sented in another way,

Q=E (eii_aiz)» (2)

where i runs over all communities and e;; represents the frac-
tion of all links connecting nodes, respectively, in communi-
ties ¢; and c;. According to the definition, we have e¢;;
:ﬁEwAWé[r(u),i]é[r(v) ,j1. Therefore, ¢;; is the fraction of
all links lying in community c;. @; is the fraction of links that
end in nodes of ¢;, i.e., aizﬁjeijzﬁEudué[r(u),i].

If all link ends in community ¢; are randomly connected,
the expected fraction of links lying within community c; is
a?. The fraction of intracommunity edges (e;;) minus the ex-
pected value of the same quantity (aiz) measures whether a
network division indicates a strong community structure. The
objective of our algorithm is therefore to find a network di-
vision, which maximizes the modularity function Q.
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TABLE L
algorithm.

The pseudocode of the iterated tabu search

: §p«—initial solution
: s’ «—tabu search (sg)
: repeat

s*" «tabu search (s)

1

2

3

4:  s*« perturbation operator (s’)

5

6: '« acceptance criterion (s*',s")
7

: until stop condition met

B. General procedure

The main challenges of community identification consist
of deciding the number of communities and optimizing the
modularity function. Therefore, an effective community dis-
covery algorithm should not only be able to decide by itself
the appropriate number of community partitions without
prior knowledge but also effectively optimize the modularity
function Q as far as possible.

Generally, our algorithm consists of two phases: basic op-
timization and postrefinement. During the basic optimization
phase, we recursively divide each large community into two
smaller ones until Q cannot be improved any more. After
that, the postrefinement phase is employed to adjust locally
the community division while remaining the number of com-
munities unchanged. During these two phases, we use a hy-
brid metaheuristic algorithm called ITS to optimize the
modularity function Q. In the following sections, we first
describe the general idea and framework of our iterated tabu
search algorithm followed by its adaptation to the two opti-
mization phases.

C. Iterated tabu search algorithm

TS and ILS are two well-known metaheuristics and have
proven their effectiveness for solving separately a large num-
ber of practical optimization problems [28,29]. In this paper,
we consider the possibility of combining them to achieve
high-quality solutions for the community structure identifi-
cation problem.

Tabu search can be used with both long and short CPU
times. In general, long CPU time would lead to better results.
However, like other local search algorithms, TS also easily
falls into local optimum trap even long CPU time is allowed.
Therefore, it would be preferred to combine short TS runs
with some robust diversification operators to jump out of
local optimum trap. Interestingly, ILS provides such diversi-
fication mechanisms to guide the search to escape from the
current local optimum and move toward new promising re-
gions in the search space [29].

Iterated tabu search algorithm starts with an initial solu-
tion and performs tabu search until a local optimum is found.
Then, the current local optimum solution is perturbed and
another round of TS is performed to the perturbed solution.
Finally, an acceptance criterion is used to decide whether the
new local optimum solution is accepted as the initial solution
for the next run of tabu search. Table I shows the pseudocode
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of our ITS algorithm.

A fundamental principle of our ITS is to exploit the
tradeoff between diversification and intensification. Intensifi-
cation focuses on optimizing the objective function as far as
possible within a limited search region while diversification
should be able to drive the search to explore new promising
regions of the search space. The intensification of our ITS
algorithm is realized by the tabu search procedure. The di-
versification mechanism—perturbation operator—has two
aims: one is to jump out of the local optimum trap just vis-
ited; the other is to lead the search procedure to a new prom-
ising region.

In order to adapt the above ITS algorithm to the two
phases of our community identification algorithm, we just
need to define how the initial solution is generated, what is
the neighborhood, how the tabu list is designed, what is the
stop condition of tabu search, how the perturbation operator
is designed, and what is the acceptance criterion.

D. Basic optimization

From a single community, our basic optimization proce-
dure divides the network into two communities. Then each
smaller community is further divided into two. This proce-
dure is repeated until the modularity Q cannot be further
improved, just as done in [17]. During this recursive division
process, we employ the iterated tabu search algorithm to op-
timize the modularity Q. Therefore, we only need to describe
our ITS algorithm for splitting one community into two.

Suppose we divide community c; into two communities c;
and ¢;. Initially, we divide all the vertices belonging to c; into
two random partitions, i.e., each vertex is randomly assigned
to c; or ¢;. Then, this initial partition is optimized using our
ITS algorithm.

We now focus on the basic search engine of our ITS
algorithm—tabu search [28]. It is widely believed that one of
the most important features of a local search-based algorithm
is the definition of its neighborhood. In a local search proce-
dure, applying a move to a candidate solution leads to a new
solution. The neighborhood move of our TS is moving one
vertex from a community to another. In order to evaluate this
neighborhood move in an efficient way, we use an incremen-
tal evaluation technique. The main idea is to maintain in a
special data structure the move value for each possible move
of the current solution. Each time a move is carried out, the
elements of this data structure affected by the move are up-
dated accordingly. Let ¢; or ¢; be two communities and u be
a vertex in any of these two communities (say, u € ¢)). It is
observed that the change to Q incurred by moving vertex u
from c; to ¢; can be represented as

dV-dV d(a;-a) d.
AQ(M,c.i,ck)= u u + u\"j _ u

m m 2m?’ 3)

where dff’ (respectively, dik)) is the number of edges connect-
ing u and vertices in community c; (respectively, c;). m, d,,
a;, and a are the same as in Egs. (1) and (2).

One observes that after this move is performed, a; and a;

are updated as follows:

PHYSICAL REVIEW E 80, 026130 (2009)

! du
aj=aj=> . 4)
d
L=+ 5
dy = ay m (5)

For any vertex v(v #u), d7 and d are updated as

dV" =dV - A,,, (6)
d,) =d) +A,,. (7

For any vertex v in community c;, we can obtain the updated
AQ value AQ/ ) by substituting Egs. (4)—(7) into Eq. (3).

v,Ci\C
Therefore, we have
/ & 24,
AQ(”"'j"'k) - AQ(”*"j"’k) \mT m ) (8)

Similarly, for any vertex v in community c;, AQ, cpc) is
TR

updated as
- AQ(U,Cj,L‘k)

if v=u

uv

AQ(y 1) = dy 24

- ) otherwise.
m m

AQ(U*Ck*Cj) + (
)

2

One easily finds that the term (:,_u?_ ) in Eqgs. (8) and (9) is
a constant for a given network. That is to say, it can be
precalculated and stored in a data structure. Thus, we only
need one addition operation to update each AQ value after
each move. However, since dg), d;k), aj, and a; are dynami-
cally updated at each step [Eqgs. (4)—(7)], we need four addi-
tion and two multiplication operations for directly calculat-
ing AQ values using Eq. (3). Therefore, the computational
efforts of Egs. (8) and (9) are much fewer than those of Eq.
(3). Note that Eq. (3) is just used in the community initial-
ization and we always employ Egs. (8) and (9) to update AQ
values during the tabu search procedure. We have to mention
that this is not merely a technical trick since at each local
search step we need to update AQ values of all vertices be-
longing to the current two communities.

The simple local search algorithm chooses the best move
in the current neighborhood at each step until the results do
not improve. Compared with the simple local search algo-
rithm, TS introduces a special data structure called tabu list
to forbid the previously visited solutions to be revisited in
order to avoid cycling. In our TS algorithm, when moving
one vertex u from one community c¢; to another one ¢y, this
vertex cannot be moved back to the previous community c;
for the next TabuTenure iterations. In our present implemen-
tation, we have elected to set

TabuTenure(u) = C +rand(10), (10)

24,

where C is a constant and rand(10) denotes a randomly gen-
erated number from 1 to 10. The constant C is experimen-
tally fixed at 10 in our implementation.

The TS algorithm then restricts consideration to vertices
not forbidden by the tabu list and selects a vertex to move
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that produces the largest AQ value (thus improving Q if this
value is positive). However, some of those forbidden solu-
tions might be of excellent quality and might not have been
visited. To mitigate this problem, an aspiration criterion is
applied that permits a move to be selected by overriding its
tabu state if it leads to a solution better than the currently
known best solution.

This TS process stops when the best solution cannot be
improved within a given number « of moves that we call the
improvement cutoff. In this paper, we experimentally set a
=2000 for all tested networks.

When the best solution obtained by the TS algorithm can-
not be improved any more, we employ a perturbation opera-
tor to reconstruct this local optimum solution. A commonly
used perturbation operator is to destruct partially the previ-
ous local optimum solution in a random way, not necessarily
guided by an evaluation function [29]. However, a strong
perturbation operator should not only jump out of the local
optimum region just visited but also lead the search to move
toward new promising areas of the search space. For this
purpose, we employ a guided perturbation operator to de-
struct the reached local optimum solution.

Specifically, when the current TS terminates with the best
solution found s’, all the vertices of solution s’ are ranked in
a nonincreasing order according to their AQ values. Then, B
vertices are selected to be moved from their current commu-
nity to another, where the vertex of rank i is selected accord-
ing to the following probability distribution:

PGi)=i%2 j¢, (11)
J

where ¢ is a positive real number (empirically set at 2.0) and
B denotes the perturbation strength.

It is reasonable that a greater 8 corresponds to more pos-
sibilities of escaping from the current local maximum, while
too large B will behave like random start. In this paper, we
empirically set B=7/5, where 7 is the total number of verti-
ces in the current two communities.

The rationale behind this strategy is that a vertex having a
large value of AQ should have priority to move to another
community. In sum, this perturbation operator is based on the
identification of a set of the critical vertices and moving
these vertices to the opposite community.
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From this perturbed solution, a new tour of TS is again
used to optimize the modularity function. This process is
repeated until a certain number of perturbations are per-
formed. We call this procedure the iterated tabu search algo-
rithm.

E. Postrefinement

When the above-mentioned basic optimization phase fin-
ishes with the best known solution, a postrefinement proce-
dure is launched to further optimize Q with maintaining the
number of communities unchanged, as done in [30]. In this
refinement stage, we employ again the above iterated tabu
search algorithm to improve Q as much as possible.

In this procedure, the neighborhood move is defined as
moving a vertex u from community c¢; to ¢, denoted by
(u,c;j,cp). For a network with n vertices and a community
partition with R communities, the size of this neighborhood
is bounded by O(nR). At the beginning of the algorithm, AQ
values are also initialized according to Eq. (3). As demon-
strated in the basic optimization procedure, the correspond-
ing AQ values are updated as in Egs. (8) and (9) during the
TS procedure. Suppose we perform a neighborhood move
(u,cj,ck). Then, if a neighborhood move involves moving a
vertex v in community c, to ¢, and both g and / are unequal
to j or k, the AQ values of this move (v,cg,ch) will not be
changed and not be necessarily updated. Thus, this technique
could save a lot of computational efforts.

Like in the basic optimization procedure, the perturbation
operator is employed to perturb the local optimum solution if
TS cannot improve the best known results any more. Once
again, all the moves are ranked in a nonincreasing order
according to their AQ values. Then, a certain number of
highly ranked moves are randomly chosen to be performed
according to Eq. (11). After that, the same TS algorithm is
applied to the perturbed solution. This process is repeated
until a certain number of perturbations is reached. Finally,
the algorithm finishes with the best known solution corre-
sponding to the maximal Q value.

III. COMPUTATIONAL RESULTS

To assess the effectiveness of our proposed ITS algorithm,
we carry out experiments on seven networks of different

TABLE II. Computational results of our ITS algorithm.

Basic optimization Postrefinement

Instance n m Opest Tpest Quver 8N Opest pest Quver 8N
Zachary 34 78 0.4188 0 0.4188 4 0.4198 0 0.4198 4
Jazz 198 2742 0.4422 125 0.4422 4 0.4460 260 0.4453 4
C.Elegans 453 2025 0.4419 247 0.4388 10 0.4513 584 0.4473 10
Email 1133 5451 0.5780 452 0.5648 12 0.5811 875 0.5798 10
Erdos 6927 11850 0.6861 1297 0.6765 120 0.6902 2348 0.6872 108
PGP 10680 24316 0.8418 2639 0.8368 499 0.8427 5168 0.8406 570
Cond-Mat 27519 116181 0.6911 5426 0.6857 341 0.6957 8467 0.6908 404
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FIG. 1. (Color online) Best network divisions of the Zachary
network, respectively, for basic optimization and postrefinement.

sizes from the literature, ranging from 34 to 27 519 vertices,
and compare our ITS algorithm with six best performing
algorithms in the literature. These networks include a Za-
chary karate club network (Zachary) [31], a jazz musician
collaborations network (Jazz) [32], a metabolic network for
the nematode C.Elegans (C.Elegans) [33], a university
e-mail network (e-mail) [34], an Erd6s collaboration network
(Erdss) [35], a trust network of mutual signing of cryptogra-
phy keys (PGP) [36], and a scientific coauthorship network
in condensed-matter physics (Cond-Mat) [37].

Our algorithm is programmed in C and run on a PC run-
ning Windows XP with Intel Pentium IV 2.66 GHz CPU and
512 MB RAM. Given the stochastic nature of our ITS algo-
rithm, each problem instance is independently solved ten
times with a time limit of 3 CPU h.

Table II gives the computational statistics of our ITS al-
gorithm. Columns 2 and 3, respectively, give the number of
vertices (n) and the number of edges (m) of the networks.
Columns 4-7 give the results of our basic optimization
phase: the best modularity value (Qp,), the CPU time (in
seconds) to reach the best solution (z,,,,), the average modu-
larity value over ten independent runs (Q,,.,), and the num-
ber of communities (gy) corresponding to the best commu-
nity division. Similarly, Columns 8—11 present the results of
our algorithm after the postrefinement phase where ¢,,,, rep-
resents the total CPU time to reach the best solution, includ-
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ing that used in the basic optimization. One easily observes
that for all the tested networks, our postrefinement procedure
consistently improves the results obtained by the basic opti-
mization procedure in terms of both the best and the average
modularity values, which shows the effectiveness of our two-
phases ITS algorithm.

For example, Fig. 1 demonstrates the best network divi-
sions, respectively, obtained by the phases of basic optimiza-
tion (Q=0.4188) and postrefinement (Q=0.4198) for the Za-
chary network. One easily observes that the only difference
between these two divisions is the placement of vertex 10.
Our experiments show that the network division with Q
=0.4198 cannot be obtained by merely using the basic opti-
mization procedure even with much more computational ef-
forts. This might disclose some limitations of the general
procedure of recursive partitioning and highlight the impor-
tance of the postrefinement phase.

Table II assesses the effectiveness of our ITS algorithm on
the seven networks. Now, we turn our attention to the com-
parison of our ITS algorithm with the most effective algo-
rithms in the literature. Table III gives the computational
comparison of our ITS algorithm with six state-of-the-art
algorithms, which include Newman’s fast (NF) algorithm for
community detection [18], the extremal optimization (EQ)
algorithm developed by Duch and Arenas [20], the clustering
algorithm (PBD) by Pujol er al. [38], the multistep greedy
algorithm (SC) by Schuetz and Caflisch [22], the improved
Newman’s fast algorithm (DDA) by Danon et al. [23], and
Newman’s spectral (NS) algorithm [12]. In Table III, col-
umns 2 and 3 recall the number of vertices of the network
and the best modularity obtained by our ITS algorithm. Col-
umns 4-9 present the best results obtained by these state-of-
the-art algorithms and the best result for each instance is
indicated in bold.

From Table III, one observes that for five small and me-
dium size networks, our ITS algorithm obtains better modu-
larity than these previous state-of-the-art algorithms. Further-
more, for the two left large networks PGP and Cond-Mat, we
have achieved worse results than at least three reference al-
gorithms. It should be noted that at least two algorithms SC

TABLE III. Comparison with the state-of-the-art algorithms in terms of the best modularity.

Instance n ITS NF? EO® PBD® sc? DDA® Nsf
Zachary 34 0.4198  0.3810 0.4188 03937  0.398 0.4087  0.419
Jazz 198 0.4460  0.4379 0.4452 04451 04409  0.442
C.Elegans 453 04513 0.4001 0.4342 04164  0.450 0.435
Email 1133 0.5811  0.4796 0.5738 0.575 05569  0.572
Erdos 6927 0.6902  0.6723%  0.6520%  0.6817

PGP 10680  0.8427  0.7329 0.8459 0.878 0.7462  0.855
Cond-Mat 27519 0.6957  0.6683 0.6790 0.7251  0.748 0.723

Reference [18].
PReference [20].
“Reference [38].
Reference [22].
“Reference [23].
fReference [12].

€The results of NF and EO algorithms on the Erdos network are cited from [38].
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and NS can obtain better results than our ITS algorithm for
both these two largest networks. In addition, three algorithms
EO, PBD, and DDA can achieve better results than our ITS
algorithm for at least one of these two large networks, while
algorithm NF obtains worse results than our ITS algorithm
for both these two networks. In sum, this comparison dis-
closes that our ITS algorithm obtains quite competitive re-
sults for these tested networks compared with other state-of-
the-art algorithms in the literature.

In this section, we compared our results with those ob-
tained by six reference algorithms in the literature in terms of
the best modularity obtained. However, one may wonder
whether this comparison is fair since different algorithms use
quite different machines and different time limits. In fact,
comparing the computing time for different algorithms is a
quite complex and difficult issue. However, for indicative
purpose, we indicate the CPU time of our ITS algorithm for
reaching the best solutions in Table II, from which one ob-
serves that the CPU time for most instances are within 1.5
CPU h, although the time limit of our algorithm is set to be
3 CPU h.

Let us give a final comment that all the computational
results reported in Table II were obtained without special
tuning of the parameters, i.e., all the parameters used in our
algorithm are fixed constant [e.g., the improvement cutoff of
TS « and the selection importance factor ¢ in Eq. (11)] or
dynamically and automatically tuned [e.g., the tabu Tenure in
Eq. (10) and the perturbation strength 8] during the problem
solving for all the instances considered here. It is possible
that better solutions would be found by using a set of
instance-dependent parameters. In fact, we have tried to tune
these parameters and observed that the following parameter
settings will give satisfying results: a e[1000,5000], ¢
€[1.5,3], TabuTenure €[10,25], and B e[A/10,i/4].

IV. CONCLUSION

Our ITS algorithm for identifying community structure is
composed of a basic optimization procedure and a postre-
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finement procedure. In each procedure, a TS is employed to
optimize the modularity while a perturbation operator is used
to perturb the local optimum solution when TS cannot im-
prove the results any more. Our ITS algorithm with these
strategies achieves a tradeoff between intensification and di-
versification. In this paper, we also proposed a fast incremen-
tal neighborhood evaluation technique, allowing us to save a
considerable amount of computational efforts.

In spite of being quite simple in comparison with most top
performing algorithms, ITS proves to be highly effective in
finding good solutions for the set of seven benchmark in-
stances from the literature, containing from 34 to 27 519
vertices. Compared with six state-of-the-art algorithms, ITS
is able to find competitive results for all the tested networks.
In particular, it can obtain better results than reported in the
literature for five networks with size from 34 to 6927.

However, for the two large networks PGP and Cond-Mat,
our ITS algorithm obtains slightly worse results than the pre-
vious best known ones. Therefore, our work in progress in-
cludes enhancing our heuristic for solving large instances.
This work will enable us to report on our approach to even
larger networks in future papers.

There are several other directions to extend this work.
One immediate possibility is to examine other neighbor-
hoods. ITS and most existing algorithms are based on the
simple one vertex move neighborhood. Richer neighbor-
hoods using, for instance, the two vertices move would be
worth examining. Furthermore, instead of using the objective
function as the unique evaluation measure, other evaluation
functions using additional information would likewise be
worth exploring. Finally, more advanced adaptive memory
strategies from the tabu search provide opportunities for cre-
ating further improvements.
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